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Abstract

A model for slender, liquid crystalline, bicomponent fibres at low Reynolds and Biot numbers based on the slenderness ratio as the perturbation

parameter, is presented. The model results in one-dimensional equations for the fibre’s radii, axial velocity component and temperature, to which

we have added two transport equations for the molecular orientation and crystallization and the effects of these variables on the elongational

viscosity. The crystallization kinetics is based on Avrami–Kolmogorov theory and is affected by the molecular orientation, while the latter is

based on Doi’s slender body theory for liquid crystalline polymers. It is shown that the model depends on a large number of dimensionless

parameters, and shows that the axial strain rate and the degree of molecular orientation increase as the activation energy of the dynamic viscosity

of the core, the heat transfer losses, the thermal conductivity ratio and the pre-exponential factors ratio are increased, whereas they decrease as the

thermal capacity of the core is increased. It is also shown that the degree of molecular orientation increases and reaches a value equal to one,

whereas no complete crystallization is achieved. It is also shown that the crystallization first increases sharply and then at a smaller pace. It is also

shown that the axial stresses on liquid crystalline bicomponent fibres are much higher than those on amorphous ones.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In bicomponent melt-spinning processes, two polymers are

co-extruded through a small hole in a plate into ambient air to

form a single filament or compound fibre with the desired

cross-section. The resulting extrudate is simultaneously

extended and wound up on a rapidly rotating drum.

Solidification takes place between the plate and the drum,

and large extensions rates, rapid cooling, and high speeds are

usually involved. This manufacturing process is of great

interest due to its commercial applications in the production of,

for example, fibres for thermal bonding, electrically conducting

fibres, textile fibres, optical fibres, etc., e.g. [1–3].

Since in many applications including textile fibres, optical

fibres, reinforced fibres, etc., the sheath material either protects

the core, serves as a waveguide in signal transmission or is a

more costly material than the core with more desirable surface

properties, the combination of two different materials with

different properties can result in a composite fibre with

desirable global properties.
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Although there has been quite a lot research on the

development of one-dimensional, mathematical models for

the analysis of single-component filaments and jets under both

isothermal and non-isothermal conditions at low Reynolds

numbers [4–6], bicomponent or compound fibres such as those

used in reinforced materials and optical fibres have received

very little attention.

Previous studies of bicomponent fibres have mainly

considered isothermal flows [7–13]. The most remarkable

non-isothermal study of bicomponent fibres known to the

author is that of Kikutani et al. [14] who modelled the high-

speed melt spinning of bicomponent fibres consisting of

poly(ethylene terephthalate) (PET) in the core and polyprope-

lene (PP) in the sheath by means of simple, one-dimensional

equations of mass, linear momentum and energy conservation,

and included both Newtonian and upper-convected Maxwell

rheologies and drag on the fibre.

All previous modelling studies of bicomponent fibres have

dealt with amorphous materials. However, it is well known that

properties of plastic products manufactured by heating the

polymer to above its melting temperature and then deforming

the melt while simultaneously cooling it to get the desired

shape as in melt spinning, depend on the processing conditions

to which the polymer is subject during its manufacture.

Furthermore, depending on the molecular structure and

processing conditions, the final product can be in either an
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amorphous or semi-crystalline state. Polymers that are unable

to crystallize on cooling below their glass transition tempera-

ture, form amorphous solids, and, if these solids are formed by

deforming the polymer while cooling it through the glass

transition temperature, they can exhibit strong anisotropy. As

the deformed amorphous polymer melt cools below its glass

transition temperature, its molecules lose their mobility and

become frozen in their oriented configuration.

The phase change from the amorphous to the semi-

crystalline stage is referred to as a phase transition. Early

work on phase transitions considered that heat conduction was

dominant and assumed that the temperature was the basic

variable. Mean-phase field models were subsequently

developed; these models introduce both the temperature and

an order parameter, modify the energy equation to account for

the order parameter, and introduce an additional equation the

origin of which can be traced back to the Landau–Ginzburg

theory of phase transitions. However, in most situations of

practical interest, other mechanisms than conduction, e.g.

deformation of the solid, take place and must be considered by

introducing the kinematics of both the liquid and solid.

In the liquid phase, there are density fluctuations caused by

thermal agitation [15,16]. These fluctuations may eventually

create small clusters or aggregates of polymer molecules

having the same properties as the crystalline phase; the small

crystals are continuously being created and destroyed by

fluctuations because the formation of a crystal involves the

creation of an interface between the liquid and the crystal and

its consequent energy cost. Moreover, surface effects are

dominant in clusters of small size and, as a consequence, their

growth is not energetically favorable, and the small crystals

tend to dissolve. There exists, however, a critical size beyond

which volume effects dominate over surface ones, and the

growth of the cluster is favored by a global reduction of energy.

The size that determines the stability of the clusters is called

critical size, and the process of formation of crystals of size

larger than or equal to the critical size is called nucleation.

There are two basic types of nucleation: homogeneous

nucleation which occurs in the bulk of a pure substance and

heterogeneous nucleation which takes place in the presence of

impurities, pre-existing crystals, boundaries, etc.

Nucleation is the first step in the crystallization process, for

it determines the appearance of the first crystal nuclei which are

the germ of the second stage of crystallization, i.e. growth. In

this second stage, nuclei larger than the critical size tend to

grow either through the addition of monomers or by acting as

sites of heterogeneous nucleation, e.g. nucleation on the

surface of a growing crystal.

Nucleation is an activated process where an energy barrier

has to be overcome in order to form nuclei of a critical size,

beyond which the new phase grows spontaneously. Flow-

induced crystallization in melts has been modelled in a number

of different manners. A frequently used approach is based on

the Avrami–Kolmogorov equation [17–20]. This equation was

initially developed for isothermal, quiescent crystallization,

although it has been extended to account for non-isothermal

conditions [21–24] and enhanced crystallization due to the
flow. In this approach the effect of the flow is accounted for by

the inclusion of an orientation factor which depends on the flow

[5]. Another approach is based on an extension of the work of

Flory [25] on the stress-induced crystallization of rubber. Such

an extension assumes that the temporary network junctions

play the same role as the chemical cross-links in the theory of

rubber crystallization. A third approach is based on the

formulation of constitutive equations that involve the concept

of multiple natural configurations and obtain evolution

equations for the natural configuration and mass fraction of

the crystalline material by maximizing a prescribed rate of

dissipation [26].

It is commonly accepted that crystallization kinetics is

triggered by a combination of orientation, stress and

temperature conditions [5], and it is well known that non-

isothermal effects due to the rapid cooling by the surrounding

quench air and the low thermal conductivity of fibres can result

in non-uniform fibre microstructure and (mechanical, elec-

trical, chemical, optical) properties. As a result, skin-core

differentiation or molecular orientation and structure can be

observed in many fibres. Although considerable efforts have

been made to understand the dynamics of the melting spinning

process and the relationship between spinning conditions and

fibre structure, most previous studies on melting spinning

processes are based primarily on one-dimensional models for

single-component round fibres [27–29].

In this paper, we present a one-dimensional model of liquid

crystalline bicomponent fibres that accounts for the molecular

orientation and crystallization, and uses a Newtonian rheology

for both the core and the sheath that depends in an Arrhenius

fashion on the temperature. The model is based on an

asymptotic expansion of the mass, linear momentum and

energy equations for slender axisymmetric fibres to which the

effects of crystallization and orientation are added through the

solution of two equations for the degrees of molecular

orientation and crystallization and their effects on the dynamic

viscosity. Since the derivation of the leading-order equations

for the bicomponent fibre’s geometry, linear momentum and

energy follows similar steps to the ones employed by the author

in his studies of isothermal, bicomponent fibres [13], only brief

comments on its derivation will be made.

The paper has been arranged as follows. In the next section,

a brief summary of the one-dimensional equations employed in

this study is presented. In Section 3, some sample results

illustrating the effects of some parameters on the spinning

of liquid crystalline bicomponent fibres are presented.

A summary of the main findings of the paper is presented in

the last section of the paper.

2. Formulation

The model for liquid crystalline, bicomponent melt-spun

fibres presented here is derived from an asymptotic analysis

based on the slenderness ratio for amorphous fibres to which

we have added the effects of molecular orientation and

crystallization. The orientation model is based on Doi’s slender

body theory of liquid crystalline polymers, while the
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crystallization kinetics is based on Avrami–Kolmogorov’s

theory [17–20] with Ziabicki’s theory [5] for the coupling

between the crystallinity and the polymer orientation, and

Kikutani’s empirical law [30] is employed to relate the

elongational viscosity of the melt to the degree of crystallinity.

A brief description of both submodels is presented in the next

two subsections.
2.1. Model for amorphous fibres

Consider an axisymmetric, bicomponent or compound

liquid jet such as the one shown schematically in Fig. 1,

consisting of two immiscible, incompressible (constant

density) fluids which are assumed to be Newtonian. The

inner (subscript 1) and outer (subscript 2) jets correspond to

0%r%R1(t,x) and R1(t,x)%r%R2(t,x), respectively, where t is

time, x and r are the axial and radial coordinates, respectively,

and R1 and R2 denote the inner jet’s radius and the outer jet’s

outer radius, respectively.

The fluid dynamics of the compound jet or fibre are

governed by the two-dimensional conservation equations of

mass, linear momentum in the radial and axial directions, and

energy, plus appropriate boundary conditions at the nozzle exit

(xZ0), downstream or take-up location (xZL), initial

conditions, symmetry boundary conditions at rZ0, and

kinematic, dynamic and thermal boundary conditions at R1(t,

x) and R2(t,x). The kinematic conditions indicate that the

interfaces at R1 and R2 are material surfaces where the velocity

field is continuous, whereas the dynamic ones establish the

continuity of shear stresses and the balance of the jump in

normal stresses by surface tension. In addition, the thermal

boundary conditions at the interfaces establish the continuity of

the temperature and heat fluxes.

In the model presented here, we assume that the density, ri,

specific heat, Ci, thermal conductivity, Ki, and surface tension,

si, where iZ1,2 denote the core and the sheath, respectively,
Fig. 1. Schematic of a compound fibre.
are constant, and the gases surrounding the sheath are

dynamically passive. The latter assumption can be justified

due to the small density and dynamic viscosity of gases

compared with those of liquids. In addition, it is assumed that

the dynamic viscosity of the two components of the fibre

depends in an Arrhenius fashion on the temperature, T, as

mi Z Aiexp K
Ei

TiKðTmÞi

� �
; (1)

where A, E and Tm denote the pre-exponential factor, activation

energy and melting temperature, respectively. This equation

can be linearized and written as

mi Z DiexpðKHiðTi KðTmÞiÞÞ; (2)

which indicates that the dynamic viscosity increases exponen-

tially with the temperature for T!Tm, and the values of D and

H can be easily deduced from Eq. (1).

For slender compound jets at low Reynolds number, i.e. 3Z
(R0/L)/1, where R0 denotes a characteristic radius at the die’s

exit and L is the distance between the die’s exit and the take-up

point, it is convenient to nondimensionalize r, x, t, the axial and

radial velocity components, u, v, respectively, the pressure, p,

density, r, specific heat and thermal conductivity, and T with

respect to R0, L, L/u0, u0, v0, m0u0/L, r0, C0, K0 and T0,

respectively, where u0 is a characteristic (constant) axial

velocity component, v0ZR0u0/L, T0 is a reference temperature,

and r0, C0, K0 and m0 are (constant) reference values for the

density, specific heat, thermal conductivity and dynamic

viscosity, respectively. Furthermore, for small Reynolds

numbers, i.e. Re hr0u0R0=m0 Z3R, large Froude numbers,

i.e. Fr h ðu2
0=gR0ÞZ ð �F=3Þ, large capillary numbers, i.e.

Ca h ðm0u0=s2ÞZ ð �C=3Þ, and small Biot numbers, i.e.

Bi h ðhR0=K0ÞZ32 �B, where g is the gravitational acceleration,

s2 is the surface tension at the sheath’s outer interface, and h is

the film heat transfer coefficient that includes the effects of both

convection and radiation, and �R; �F; �C and �B are O(1), it is an

easy exercise to show that the governing equations and

boundary conditions depend on 32. Therefore, by expanding

the axial and radial velocity components, pressure and

temperature as fðt; x; rÞZf0ðt; x; rÞC32f2ðt; x; rÞCOð34Þ,

and the fibre’s radii as jðt; xÞZj0ðt; xÞC32j2ðt; xÞCOð34Þ

together with the expansion of the boundary conditions about

j0(t,x), where f denotes u, v, p and T, and j denotes R1 and R2,

one obtains a sequence of equations that, at leading order, i.e.

30, yield that the leading-order axial velocity component and

temperature of both the core and the sheath are identical, and

the radial velocity component depends linearly on r. In

addition, one can easily obtain, by proceeding to O(32), the

following dimensionless one-dimensional equations

vA1

vt
C

vðA1BÞ

vx
Z 0; (3)

vA2

vt
C

vðA2BÞ

vx
Z 0; (4)
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�Rðr2A2 Cr1A1Þ
vB

vt
CB

vB

vx

� �
Z �R �Fðr1A1 Cr2A2Þ

C
v

vx
3ðm1A1 Cm2A2Þ

vB

vx

� �
C

1

2 �C

vR2

vx
C

s1

s2

vR1

vx

� �
;

(5)

�Pðr2A2Cr1A1Þ
vF

vt
CB

vF

vx

� �
Z

v

vx
ðK1A1CK2A2Þ

vF

vx

� �

C3ðm1A1Cm2A2ÞBr
vB

vx

� �2

K �BR2ðFKFNÞ;

(6)

where

A1Z
R2

1

2
; A2Z

R2
2KR2

1

2
: (7)

and, for conciseness, we have omitted the subscript 0 in the

dependent variables, B and F denote the (non-dimensional)

leading-order axial velocity component and temperature,

respectively, BrZPrðu2
0=ðC0T0ÞÞ and PrZððm0C0Þ=K0Þ are the

Brinkman and Prandtl numbers, respectively, s1 is the surface

tension at the core-sheath interface, �PZPr �R is the Péclet

number, and FN is the non-dimensional temperature of the

gases surrounding the cladding.

The condition that the leading order temperatures of the core

and cladding are identical allow us to write the leading-order

dynamic viscosities as (cf. Eq. (2))

mi Z Gi expðEið1KFÞÞ; (8)

and places some limitations in the applicability of the model

presented here, as discussed below.

It must be pointed out that the slender flow approximation

employed here is not valid near the die’s exit where the flow

undergoes a change form no-slip to free-surface conditions,

and, therefore, the axial coordinate x is measured not from the

die’s exit as mentioned above; however, we will continue using

this terminology hereon. It must also be pointed out that perfect

bonding of the core and sheath has been assumed at R1 and, as a

consequence, there is continuity of the tangential and normal

velocity components at R1.

Note that Eqs. (3)–(6) have been dimensionalized with

respect to the (dimensional) reference variables r0, m0, C0 and

K0 which can be set to the corresponding ones for either the

core or the sheath. We have, however, preferred to introduce

the subscript 0 reference variables in order to clearly illustrate

the effects of thermal inertia and thermal conductivity in the

one-dimensional equations.

The leading-order equations for the pressure yield

p1 Z pe Km1

vB

vx
C

1
�C

vR2

vx
C

s1

s2

vR1

vx

� �
; (9)

p2 Z pe Km2

vB

vx
C

1
�C

vR2

vx
; (10)

where pe denotes the pressure of the gases surrounding the

cladding and may be set to zero without loss of generality.
2.2. Orientation and crystallization of compound fibres

The molecular orientation and crystallization of compound

fibres have been introduced in Eqs. (3)–(9) through a

generalization of the model developed by Forest et al. [27]

for liquid polymer round fibres. Such a generalization requires

the solution of Eqs. (2)–(8) where mi is to be replaced by an

effective dynamic viscosity, me,i, given by

me;1 Z m10ðFÞ exp b1

q1

qN;1

� �n1
� �

C
2

3
a1l1s2

1; (11)

me;2 Z m20ðFÞ exp b2

q2

qN;2

� �n2
� �

C
2

3
a2l2s2

2; (12)

in those equations as well as in Eqs. (9) and (10), together

with the solution of the following (nondimensional) equations

for the degree of orientation, s, defined as the ensemble average

of the alignment of the molecular direction to the axial direction,

and the degree of crystallinity, q, of the core and sheath

vsi

vt
CB

vsi

vx
Z ð1KsiÞð2si C1Þ

vB

vx
K

ji

li

UiðsiÞ; i Z1;2; (13)

vqi

vt
CB

vqi

vx
ZkAiðsÞðqN;iKqiÞ; i Z1;2; (14)

where kAiðsÞZkAið0Þ expða2is
2
i Þ is the linearized growth rate,

kAi(0) is the amorphous growth rate [5], a2i is a constant, qN,i is

the ultimate degree of crystallinity,

UiðsiÞZsi 1K
Ni

3
ð1KsiÞð2si C1Þ

� �
; i Z1;2; (15)

is a bulk free energy which is related to the intermolecular

potential, j is an anisotropic drag parameter (0!j%1, jZ1 for

isotropic models, and jz0.5 for rigid-rod molecular models), l

is the molecular relaxation time of the liquid crystalline

polymer, N is the dimensionless density of the liquid crystalline

polymer, a is a parameter that relates the kinetic energy to the

inertial energy of the liquid crystalline polymer, bi is the

crystallization viscosity rate and ni is the crystallization

viscosity index.

It must be noted that the effective dynamic viscosity, me,i, of

Eqs. (11) and (12) contains the effects of temperature through

Eq. (8). The effects of crystallization have been assumed to be

multiplicative, whereas those of orientation have been assumed

to be additive in Eqs. (11) and (12). It must also be noted that

mi, bi and ni are material-dependent, e.g. biZ4.605 and niZ12

for nylon-66, biZ4 and niZ2 for PET, and that Eqs. (3)–(6),

(13) and (14) reduce to those for single-component liquid

crystalline filaments [27] when r1Zr2, C1ZC2, K1ZK2,

m1Zm2 and s1Z0, j1Zj2, l1Zl2, kA1(0)ZkA2(0), a21Za22,

N1ZN2, n1Zn2, b1Zb2, qN1ZqN2.

Eq. (13) indicates that the molecular orientation is affected

by the axial velocity component, B, and affects the degree of

crystallization through Eq. (14); both the orientation and

crystallization affect the axial velocity component (Eq. (5))

through the effective dynamic viscosities (Eqs. (11) and (12)),
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and, of course, the compound fibre’s geometry (Eqs. (3) and

(4)) and temperature (Eq. (6)) are affected by the axial velocity

component. This implies that the orientation and crystallization

of the compound fibre are nonlinearly coupled with the fibre’s

geometry, axial velocity component and temperature, and that

Eqs. (3)–(6), (13) and (14) must be solved numerically in an

iterative fashion. However, if jiZ0 in Eq. (13), then the

resulting equation under steady state conditions can be written

as ðds=dyÞZ ð1KsÞð1C2sÞ, where yZln B and the subscript i

has been dropped, and has fixed points at sZ1 and sZK(1/2)

which are stable and unstable, respectively, and, since sR0, it

can be easily shown that the solution to this equation evolves

towards sZ1. Moreover, Eq. (13) with jZ0 can be integrated

analytically subject to, say, s(0)Z0, to yield the molecular

orientation as a function of the leading-order axial velocity

component as

BðxÞ Z
ð1 C2sÞ2

1Ks
; (16)

which is a quadratic expression from which one can easily

obtain s(B). Furthermore, under the same assumptions as

discussed above, Eq. (14) can be integrated analytically subject

to q(0)Z0 to yield

qN

qKqN

Z

ðx

0

kAðsÞ

BðxÞ
dx; (17)

where kAðsÞZkAð0Þ expða2s2Þ can be written as kA(B) upon

using s(B) from Eq. (16). Both Eqs. (16) and (17) indicate that,

under the above assumptions, the molecular orientation and

crystallization depend on B(x) which, in turn, depends in a

nonlinear fashion on the solutions to Eqs. (3)–(6) with mi

replaced by me,i.

As stated above, the one-dimensional Eqs. (3)–(6), (13) and

(14) place some limitations on the applicability of the model

presented here, for this one-dimensional model does not

provide any information about radial variations, especially,

those of temperature, and on the implications of these

variations on the fibre microstructure. Moreover, if the model

overestimates the heat transfer at the fibre’s outer surface, it

will predict inaccurate temperature fields which, in turn,

influence the average axial velocity, tensile stress, crystallinity,

and free-surface shape due to the nonlinear couplings between

the mass, linear momentum and energy equations. Through the

dependence of the crystallization kinetics on temperature and

molecular orientation, a crystallinity profile is developed in the

radial direction, and the radial variation of the molecular

orientation and crystallinity may have a strong influence on the

fibre microstructure and properties, i.e. physical, mechanical,

thermal, chemical, electrical and optical properties, such as

tensile modulus and optical birefringence. In addition, the

radial dependence of the temperature field may be of great

importance in bicomponent fibres due to the difference in the

thermal conductivities of the core and sheath. Moreover, the

model presented above does not account for latent heat effects

associated with crystallization/phase changes and the effects of
the core-sheath interface on molecular orientation and

crystallization.

Although, in this paper we shall be concerned with Eqs. (3)–

(6), (13) and (14) under steady conditions, it must be noted that

some of the limitations of the one-dimensional model

mentioned above can be avoided by employing the one-

dimensional equations for the compound fibre’s leading-order

geometry and axial velocity component presented above, while

the temperature, orientation and crystallization fields can be

determined from the solution of the appropriate two-

dimensional equations. If this is done, one must account for

the radial variations of the dynamic viscosity due to the radial

dependence of the temperature field and the degrees of

orientation and crystallization, so that one has to solve

Eqs. (3) and (4) for the fibre’s geometry, and Eq. (5) with

m1Z ð1=A1Þ
ÐR1

0

m1rdr and m2Z ð1=A2Þ
ÐR2

R1

m2rdr and use the

leading-order radial velocity component, vZKððr=2ÞðvB=vxÞÞ,

to determine the two-dimensional distributions of temperature,

orientation and crystallization in the compound fibre. However,

this hybrid one-two-dimensional model may not offer any

computational advantage over a full two-dimensional model

for the mass, linear momentum and energy conservation

equations, and for the degrees of molecular orientation and

crystallization.

It must also be noted that latent heat effects associated with

the solidification of the fluids for the core and sheath have been

disregarded and that the solidification occurs through the

exponential increase of the dynamic viscosity when the

temperature drops below the melting one (cf. Eqs. (1), (2)

and (8)). It must, finally, be noted that Eqs. (3)–(15) are

dimensionless and according to the nondimensionalization

introduced in this paper 0%x%1, and that dimensional

quantities can be easily recovered by undoing the scaling.

This last point must be kept in mind in the next section where

the results are presented. Moreover, the Reynolds, Froude,

Brinkman, Biot and capillary numbers introduced above are

based on dimensional quantities, and the nondimensional Biot

number, �B, includes the effects of convection and radiation,

although it will be considered as constant in the results

presented in the next section.

Even though the one-dimensional equations reported above

represent a simplification compared with a full two-dimen-

sional model for liquid crystalline bicomponent fibres, it must

be stressed that this model depends on large number of

dimensionless parameters, i.e. R1(0), R2(0), B(1), Ni, ji, ai, a2i,

li, qi(0), qN,i, si(0), ni, bi, �R, pe, �R= �F, �C, ((r1C1)/(r2C2)), K1/K2,

E1, E2, G1/G2, s1/s2, kA1(0), kA2(0), F(0), and FN. Since the

effects of the fibre’s radii at the die’s exit, Reynolds, Froude

and capillary numbers, density and surface tension ratios, and

take-up speed on the dynamics and linear stability of

isothermal bicomponent jets have been previously discussed

by the author [13], we shall only consider the effects of some of

the remaining parameters on nonisothermal, liquid crystalline,

compound fibres. Furthermore, since the effects of the

Brinkman number, i.e. viscous dissipation, were found to be



Table 1

Values of the parameters used in the calculations

Case E1 E2
�P1

�P2
�B K2/K1 G2/G1

1 30 30 5 5 10 1 1

2 20 30 5 5 10 1 1

3 40 30 5 5 10 1 1

4 30 30 1 5 10 1 1

5 30 30 10 5 10 1 1

6 30 30 5 5 5 1 1

7 30 30 5 5 20 1 1

8 30 30 5 5 10 0.1 1

9 30 30 5 5 10 10 1

10 30 30 5 5 10 1 0.1

11 30 30 5 5 10 1 10
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small for the parameters considered in the next section, we

shall only consider BrZ0, and, unless otherwise stated,

ðK2=K1ÞZ ðr2=r1ÞZ ðC2=C1ÞZ ðG2=G1ÞZ1 and �PZ1. Note

that when the compound fibre solidifies, the leading-order

axial velocity component becomes constant and viscous

dissipation is nil.

Note that Eqs. (3)–(15) have been dimensionalized with

respect to the reference variables r0, m0, C0 and K0 which can

be set to the corresponding ones for either the core or the

sheath. We have, however, preferred to introduce the subscript

0 reference variables in order to clearly illustrate the effects of

thermal inertia and thermal conductivity in the one-dimen-

sional equations.

The nondimensional leading-order axial forces on the inner

and outer jets (nondimensionalized with respect to 3pm0u0R0)

are

f ð1Þx hA1s
ð1Þ
x

Z A1 3me;1

vB

vx
Kpe C

1
�C

1

R2

C
s1

s2

1

R1

� �� �
; (18)

f ð2Þx hA2sð2Þ
x Z A2 3me;2

vB

vx
Kpe C

1
�CR2

� �
; (19)

respectively, where sðiÞ
x denote the axial stresses in the core (iZ

1) and sheath (iZ2).
3. Results

The steady state equations corresponding to Eqs. (3)–(6),

(13) and (14) were solved numerically subject to the following

nondimensional boundary conditions

R1ð0ÞZ a; R2ð0ÞZ g; Bð0ÞZ 1; Fð0ÞZ 1; (20)

Bð1ÞZ d; ðK1A1 CK2A2Þ
vF

vx
ð1ÞZ 0; (21)

s1ð0ÞZ0:5; s2ð0ÞZ0:5; q1ð0ÞZ0; q2ð0ÞZ0; (22)

that fix the compound fibre’s radii at the die’s exit through a

and g, d is the take-up speed, the thermal boundary condition at

the take-up point corresponds to no heat flux, and the degrees

of orientation and crystallization are set equal to zero at the

die’s exit, for NiZ4, jiZ0.5, aiZ5, a21Z10, a22Z5, liZ1,

qN,iZ0.8, niZ12, biZ4, �RZ1, peZ0, ð �R= �FÞZ1, �CZ1039,

(r1/r2)Z1, (G1/G2)Z1, (s1/s2)Z1, Q1ZQ2Z0.5, dZ100,

kA1(0)ZkA2(0)Z0.005, and FNZ0, and the values of the

parameters shown in Table 1, where Q1 and Q2 denote the

nondimensional volumetric flow rates for the core and sheath,

respectively. These values were selected so that the crystal-

lization rate for the core is higher than for the sheath, whereas

the orientation parameters are identical for both the core and

the sheath.

The solution of the steady state form of Eqs. (3)–(6), (13)

and (14) was obtained numerically by means of an iterative,
conservative, finite difference method that discretizes the

diffusion terms by means of second-order accurate central

differences and employs first-order upwind differences for the

advection terms. The number of grid points in the axial

direction was varied so as to obtain grid-independent results

and was, at least, 4000, which corresponds to a (nondimen-

sional) grid spacing equal to 2.5!10K4. Due to the nonlinear

coupling amongst the (unknown) compound fibre’s geometry,

axial velocity and temperature fields, underrelaxation factors

equal to 0.5 were employed for B, si, qi and F, and convergence

was established whenever

XNP

jZ1

1

NP
j

kC1
j

� �2
K j

k
j

� �2
� 	

%10K16; (23)

where NP denotes the number of grid points in the axial

direction, k is the kth iteration, and j represents B, si, qi and F.

The calculations were initialized with the (guessed)

geometry and axial velocity component corresponding to the

analytical solution of the viscous, isothermal regime [13],

whereas the initial guess for the temperature field was obtained

from the analytical solution of Eq. (6) in the absence of viscous

dissipation and axial heat conduction which yields an

exponential temperature distribution that depends on the

integral of R2 whose value was assumed to be that of the

isothermal, viscous flow regime.

Fig. 2 illustrates the effects of the activation energy of the

dynamic viscosity of the core, i.e. E1, on the compound fibre’s

geometry, axial velocity component and temperature for the

parameters shown in Table 1. This figure indicates that the

viscosity of the core increases dramatically as E1 is increased;

this is due to the exponential dependence of the viscosity on

temperature (cf. Eq. (8)). For the three activation energies

considered in Fig. 2, the fibre’s radii are almost constant for

xR0.6, and both the solidification and the slope of the axial

velocity increase as E1 is increased.

It is worth noting that, for the largest activation energy of

Fig. 2, the temperature at the take-up point is slightly higher

than that for the lowest activation energy; this is due to the

amplification effect of the temperature caused by the

activation energy in the dynamic viscosity law. However,

the small temperature differences observed in Fig. 2 have a
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Fig. 2. Compound fibre’s geometry (a), axial velocity component (b), temperature (c), dynamic viscosity of the core (d) and sheath (e), degree of crystallization of the core

(f) and sheath (g), and degree of molecular orientation of the core (h) and sheath (i). (Solid line and B: case 1; dashed line and *: case 2; dashed-dotted line and !: case 3).
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large effect on the dynamic viscosity of the core which is

larger and increases at a faster rate than that of the sheath for

E1Z40 and E2Z30. For E1ZE2 and values of the other

parameters identical to those of Fig. 2, there are small

differences between the dynamic viscosities of the core and

sheath.

Fig. 2 also shows that the degree of crystallization in the

core is higher than that in the sheath, and this result is in

accord with the fact that a22Oa21 in this paper. Both degrees

start from a nil value and increase sharply up to

approximately xZ0.2. Beyond this location, the degree of

crystallization increases at a lower rate. In any case, for the

cases considered in Fig. 2, no complete crystallization, i.e.

qi!qN,iZ0.8, is achieved before the take-up point. By way

of contrast, the degree of orientation increases rapidly to a

value of one; in fact, full molecular orientation occurs by

about xZ0.1. The results presented in Fig. 2 also show that

the degree of molecular orientation increases as the

activation energy of the dynamic viscosity of the core

increases, and this is due to the increase in the axial strain

rate as E1 is increased.

Similar results to those shown in Fig. 2 have been found

when E2 was varied, except that the trends of the dynamic

viscosity law for the core and sheath are reversed.
Fig. 3 illustrates the axial stresses on the core and sheath,

and shows that the axial stresses on the core are monotonic

increasing functions of the distance along the fibre for E1Z30

and 40, whereas they exhibit a relative maximum at about xZ
0.37 for E1Z20. On the other hand, the axial stresses on the

sheath are monotonic functions of x for E1Z30 and 20, and

exhibit a relative maximum at about xZ0.32 for E1Z40. The

presence of the relative maximum in the axial stresses on the

core is related to the smaller axial velocity gradient and smaller

dynamic viscosity for E1Z20. As shown in Fig. 2, the axial

strain rate and the dynamic viscosity decrease as E1 is

decreased. On the other hand, the relative maximum on the

axial stress in the sheath for E1Z40 is associated with the

activation energy of the dynamic viscosity for the sheath.

The effects of the thermal inertia on the compound fibre

have been investigated by varying the thermal Péclet numbers

of the core and sheath, i.e. by varying Pei Z ðriCiu0R0=KiÞ or

(riCi)/Ki since �PiZ �PððriCiÞ=KiÞ, for iZ1,2, and some results

are presented in Fig. 4. This figure indicates that the drop in

temperature along the fibre increases as the Péclet number of

the core is decreased, but, for all the activation energies

considered in this figure, the axial velocity first increases and

then tends to an almost constant value; the slope of the axial

velocity profile or axial strain rate increases as the thermal
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Péclet number is decreased. This result is to be expected, for an

increase in the thermal Péclet number corresponds to an

increase in advection, smaller heat transfer losses, and,

therefore, a smaller increase in the dynamic viscosity. Similar

trends to those presented in Fig. 2 have also been observed

when Pe2 or �P2 was varied.
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core (f) and sheath (g), and degree of molecular orientation of the core (h) and sheath

!: case 5).
Fig. 4 also indicates that the degree of crystallization

increases whereas the degree of molecular orientation decreases

as the thermal capacity or thermal Péclet number is increased.

Fig. 5 shows that the axial stresses on the core and sheath are

monotonic functions of the axial distance along the fibre and

increase as the thermal Péclet number is decreased. This is again a
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consequence of the fact that the axial strain rate and dynamic

viscosity decrease as the thermal Pécle number is increased.

Fig. 6 illustrates the effects of the Biot number, i.e. �B, or heat

losses. For the three Biot numbers of Fig. 6, the axial velocity

profile increases and reaches an almost constant value equal to

the take-up speed, and the slope of the axial velocity increases

as the heat transfer losses increase.
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Fig. 6. Compound fibre’s geometry (a), axial velocity component (b), temperature (c)

core (f) and sheath (g), and degree of molecular orientation of the core (h) and sheath

!: case 7).
Fig. 6 also shows that the temperature at the take-up point

decreases as the Biot number is increased; this decrease, in

turn, results in an increase in the dynamic viscosity and fibre’s

constant radii closer to the die’s exit. Moreover, an increase in

the heat transfer losses results in a slower degree of

crystallization and a faster degree of orientation. For �BZ20,

the degree of crystallization is initially steeper than those for
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�BZ5 and 10; however, the degree of crystallization at the take-

up point is higher for �BZ5 and 10 than for �BZ20. In addition,

although almost full orientation is observed at xZ0.05 for
�BZ20, only the same is observed at xZ0.25 for �BZ5.

The axial stresses on the core and sheath are exhibited in

Fig. 7 as functions of the heat transfer losses. As shown in this
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core (f) and sheath (g), and degree of molecular orientation of the core (h) and sheath

!: case 9).
figure, the axial stresses increase as the Biot number is

increased and are monotonic increasing functions of the

distance along the compound fibre.

Fig. 8 illustrates the effects of the thermal conductivity ratio,

K2/K1, on the compound fibre’s geometry, axial velocity field

and temperature. For the smallest conductivity ratio of Fig. 8,
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the axial velocity profile is concave upwards and increases in

an almost exponential manner from the die’s exit to the take-up

point, whereas the axial velocity increases rapidly for (K2/

K1)Z1 and 10. This behavior can be best appreciated in the

fibre’s geometry, i.e. constant radii are observed for (K2/K1)Z1

and 10, for xR0.6, whereas the fibre’s radii are not constant for

a conductivity ratio equal to 0.1.

Fig. 8 also shows that both the temperature drop and the

dynamic viscosity increase as the thermal conductivity ratio is

increased. Most remarkable is the fact that compound fibres with

low thermal conductivity ratios take a longer distance to start the

crystallization process than fibres of higher conductivity. On the

other hand, owing to the smaller temperature drop, fibres with

low conductivity ratios achieve higher degrees of crystallization

at the take-up point than fibres of higher ratios.

Fig. 8 also illustrates that compound fibres of high

conductivity ratios have a larger degree of orientation than

fibres of smaller ones. In fact, full orientation is observed for

xR0.1 for (K2/K1)Z1 and 10, whereas no full orientation is

observed at the take-up point for (K2/K1)Z0.1. This indicates

that the rate of orientation increases whereas the degree of

molecular orientation decreases as the thermal conductivity

ratio is increased. It must be noted that the axial strain rate

increases as the thermal conductivity ratio is increased.

Fig. 9 indicates that the axial stresses are monotonic

increasing functions of both the thermal conductivity ratio and

the distance along the bicomponent fibre. However, the axial

stresses increase sharply initially and then tend to almost

constant values for (K2/K1)Z1 and 10, whereas they keep on

increasing with x for (K2/K1)Z0.1. These results are in accord

with those illustrated in Fig. 8, which indicate that the strain

rate and dynamic viscosity increase as the thermal conductivity

ratio is increased.

Fig. 10 shows the effect of the ratio of the pre-exponential

factors of the dynamic viscosity, and shows that slightly

steeper axial velocity profiles are achieved as the pre-

exponential factor ratio is increased. Also, the temperature

drop and the degrees of orientation and crystallization are not

very sensitive functions of this ratio, although the dynamic
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Fig. 9. Axial stress on the core (a) and sheath (b). (Solid line
viscosity of the sheath increases sharply as the pre-exponential

factors ratio is increased.

The axial stresses presented in Fig. 11 are monotonically

increasing functions of the axial distance along the fibre; those

in the core increase whereas those in the sheath decrease as G2/

G1 is decreased. This result is expected, for an increase in the

pre-exponential factors ratio results in an increase of the

dynamic viscosity law of the sheath.

Although not shown here, it was found that the degree of

crystallization is a strong function of a2i and kAi(0) (cf. Eq. (14)

) but the effects of the degree of crystallization on the dynamic

viscosity law (Eqs. (11) and (12)) are much smaller than those

associated with the pre-exponential factor and activation

energy of the dynamic viscosity law. i.e. Eq. (8). The effects

of molecular orientation on the effective dynamic viscosity, i.e.

Eqs. (11) and (12), were found to be smaller than those due to

the temperature and crystallization.

The results illustrated in this paper and others not shown

here indicate that, despite the simplicity and limitations of the

one-dimensional model for liquid crystalline bicomponent

fibres presented here, a large theoretical and experimental

effort must be made to obtain accurate values for the large

number of parameters that affect the solidification of

bicomponent fibres, especially those related with the dynamic

viscosity and the crystallization kinetics.

Table 2 shows the axial stresses on the core and sheath at the

die’s exit and take-up point, and indicates that the stress at the

die’s exit and that on the core at the take-up point increase

whereas that on the sheath at the take-up point decreases, as the

activation energy of the dynamic viscosity of the core is

increased. However, as shown in Fig. 3, the axial stresses may

exhibit relative maxima. The location of these maxima is equal

to 0.3475 and 0.2995 for cases 2 and 3, respectively, and the

(nondimensional) stresses in the core at these locations are

1469 and 83,292, respectively, whereas those on the sheath are

61,244 and 25,611, respectively.

Table 2 also shows that the axial stresses on both the core

and the sheath at the die’s exit and at the take-up point are

monotonically decreasing and increasing, respectively, func-

tions of the thermal Péclet and Biot numbers, respectively.
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: case 1; dashed line: case 8; dashed-dotted line: case 9).
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Fig. 10. Compound fibre’s geometry (a), axial velocity component (b), temperature (c), dynamic viscosity of the core (d) and sheath (e), degree of crystallization of

the core (f) and sheath (g), and degree of molecular orientation of the core (h) and sheath (i). (Solid line and B: case 1; dashed line and *: case 10; dashed-dotted line

and !: case 11).
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These stresses are also monotonically increasing functions of

the thermal conductivity ratio.

On the other hand, the axial stresses on the core and sheath

at the die’s exit and that on the sheath at the take-up point are

monotonically increasing functions of the pre-exponential

factors ratio, whereas that on the core at the take-up point is a

monotonically decreasing function of this ratio. Table 2 also
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Fig. 11. Axial stress on the core (a) and sheath (b). (Solid line:
shows that the core-sheath axial stress ratio is almost equal to

the pre-exponential factors ratio for cases 9–11.

Calculations have also been performed for amorphous,

bicomponent fibres which are governed by Eqs. (3)–(6) with

Eq. (8), in order to assess the effects of the molecular

orientation and crystallization on the axial stresses on the core

and sheath, and, in Table 3, the axial stresses on amorphous
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Table 3

Nondimensional axial stresses on the core and the sheath for amorphous

compound fibres

Case ðsð1Þ
x ÞxZ0 ðsð2Þ

x ÞxZ0 ðsð1Þ
x ÞxZ1 ðsð2Þ

x ÞxZ1

1 173 173 27,241 27,241

2 154 154 2645 47,875

3 198 198 55,770 3594

4 216 216 31,498 31,498

5 142 142 24,092 24,092

6 130 130 22,847 22,847

7 354 354 45,274 45,274

8 45 45 14,431 14,431

9 270 270 36,952 36,952

10 167 17 34,675 3467

11 182 1815 19,951 199,511

Table 2

Nondimensional axial stresses on the core and the sheath for liquid crystalline

compound fibres

Case ðsð1Þ
x ÞxZ0 ðsð2Þ

x ÞxZ0 ðsð1Þ
x ÞxZ1 ðsð2Þ

x ÞxZ1

1 416 647 63,130 63,130

2 373 579 5271 109,884

3 481 748 135,074 7799

4 530 824 77,769 77,769

5 333 518 52,528 52,528

6 317 493 50,439 50,439

7 868 1351 121,448 121,448

8 113 175 24,285 24,285

9 652 1014 93,491 93,491

10 387 447 93,955 9441

11 438 2431 27,901 278,769
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compound fibres are presented. Although not shown here, the

axial stresses on amorphous fibres exhibited similar trends to

those shown in Figs. 3, 5, 7, 9 and 11, but are much smaller (by

about a factor of, at least, two) than those on liquid crystalline

fibres due to the effects of the crystallization on the effective

dynamic viscosities of both the core and the sheath (cf. Eqs.

(11) and (12)).
4. Discussion and conclusions

A one-dimensional model for slender, Newtonian, liquid

crystalline bicomponent or compound fibres has been derived

by means of asymptotic methods based on the slenderness ratio

as perturbation parameter, from the axisymmetric form of the

mass, linear momentum and energy equations for Newtonian

fluids. Molecular orientation and crystallization have been

included in the resulting one-dimensional model through two

equations for the degrees of orientation and crystallization, and

additive and multiplicative, respectively, factors in the

elongational viscosity law. In addition, the model presented

here, accounts for the nonlinear dependence of the dynamic

viscosity of the inner and outer fluids on the temperature by

means of an Arrhenius expression. The resulting model

includes the effects of gravitation, surface tension, axial

conduction, heat losses, thermal inertia, molecular orientation

and crystallization, but does not account for latent heat effects

due to crystallization/solidification, drag on the fibre and the
radial variations of the temperature, molecular orientation and

crystallization.

It has been shown that the smallness of the slenderness ratio

and the Biot number implies that the leading-order temperature

is only a function of the axial distance along the fibre, and this

places some limitations on the applicability of the model

presented here for bicomponent fibres, because it does not

provide any information about radial variations of temperature

at leading-order and on the implications of these variations on

the fibre microstructure. A hybrid two-dimensional model that

employs two-dimensional equations for the temperature and

the degrees of orientation and crystallization and the one-

dimensional equations for the fibre’s geometry and axial

velocity component derived in this paper, has been suggested

to remove some of the limitations discussed above.

Despite these limitations, the one-dimensional model has

been applied to study the effects of the activation energy and

pre-exponential factor of the elongational dynamic viscosity,

heat capacity, thermal conductivity and heat transfer losses on

the compound, liquid crystalline fibre’s shape, cooling,

orientation and crystallization, and it has been shown that the

activation energy of the dynamic viscosity plays a paramount

role in determining the fibre’s shape and the distribution of

axial stresses along the fibre. If the activation energy of the core

is higher than that of the sheath, it has been shown that the axial

stresses on the core are monotonic functions of the axial

distance along the fibre, whereas those on the sheath may first

increase and then decrease.

It has been shown that the axial strain rate and the degree of

molecular orientation increase as the activation energy of the

dynamic viscosity of the core, the heat transfer losses, the

thermal conductivity ratio and the pre-exponential factors ratio

are increased, whereas they decrease as the thermal Péclet

number is increased. It has also been shown that the degree of

orientation increases until it reaches a value almost equal to one.

For the cases considered in this study, the ultimate degree of

crystallization is not achieved along the fibre, and the steepness

of the initial crystallization is a strong function of the heat

transfer losses and heat conductivity ratio.
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